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Competition of spiral-defect chaos and rolls in Rayleigh-Be´nard convection under shear flow
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Statistical Mechanics Laboratory, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

~Received 1 May 2002; published 10 February 2003!

Computer simulations of domain coarsening of Rayleigh-Be´nard convective patterns under horizontal shear
flow are carried out. The model calculations reported here explicitly include the hydrodynamic interaction of
the order parameter field and provide a description of the spiral-defect chaos which competes with the roll
pattern. We observe shear banding at moderate strain rates.
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I. INTRODUCTION

Rayleigh-Bénard ~RB! convection is a paradigmatic ex
ample of spatially extended nonlinear phenomena@1#. When
a horizontal fluid layer is heated from below and cooled fro
above, it undergoes a transition from a spatially and tem
rally uniform conducting state to a convecting state of low
symmetry. The structure that emerges above the convec
threshold in large-aspect-ratio systems is convective r
~stripes! of arbitrary orientation. When the rolls are distorte
into curved textures, curvatures of the patterns induce a h
zontal flow. The flow in turn advects the rolls, leading to
nonlocal and long-range hydrodynamic coupling between
cal structures@2#.

As this ‘‘mean flow’’ must be divergence-free by effectiv
incompressibility of the fluid, it has only a transverse co
ponent. Accordingly, the flow is exclusively described by
~vertical! vorticity field. The chiral nature of the mean flow
then responsible for the formation of passive spirals wh
were discovered@3# in a small-Prandtl-number fluid at mod
erate distance from the onset of convection. The patter
marked by the persistent creation and destruction of rota
spirals of various sizes, and is hence termed spiral-de
chaos~SDC!. The discovery was made in a parameter regi
where, on the basis of the theory for an infinitely extend
system@4#, parallel straight rolls~ideal straight rolls, or ISR!
are stable. In fact, it has been demonstrated experimen
@5,6# that ISR form only if a perfect parallel-roll pattern
prepared by some special procedures when SDC is the
neric attractor from random initial conditions.

Interactions between the flow field and a certain inter
structure can also be brought about by shearing of var
complex fluids@7#. Examples include liquid crystals, bloc
copolymers, and surfactant solutions. It is well known th
the shear has a strong organizing effect upon these syst
and that structures such as lamellae or cylinders are e
aligned by relatively weak shear.

A natural question that arises here is whether SDC
coexist with ISR when both shear and mean flow are pres
The aim of this paper is to study this interesting issue.
order to gain insight into the effects of shear on RB conv
tion, we discuss the simplest case of a plane Couette fl
i.e., a flow with the velocity and its gradient in the horizon
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plane. @Thermal convection with vertical shear~i.e., shear
between parallel plates! has been actively studied in conne
tion with geophysical phenomena such as cloud street for
tion ~see Ref.@8# for a review!. However, as far as we know
no work has been done concerning SDC in connection w
horizontal shear.# In this case, the rolls will be bent by th
vorticity that is induced by the shear. The resulting roll d
formation will in turn enhance the mean-flow effects. At th
same time it will be opposed by shearing planes that ten
rigidify the rolls. It is thus expected that SDC competes w
ISR under shear. In fact we present simulations which sh
that, under the influence of shear flow, RB convection sp
taneously forms a banded structure characterizing the c
istence of SDC and ISR.

Our paper is constructed as follows. In the next sect
we introduce model equations for RB convection under
plied shear flow. These are suitably generalized Sw
Hohenberg~SH! equations@9# including the mean flow and
shear flow. We solve numerically a cell-dynamical-syste
@10# model ~motivated by the SH-model description! that is
expected to be appropriate for our problem. In Sec. III
show the results of the simulation. Section IV contains
general discussion of our results.

II. MODEL EQUATIONS

A. The generalized Swift-Hohenberg model under shear flow

A simplified model of the transition to roll patterns wa
introduced by Swift and Hohenberg@9#. It is a two-
dimensional theory involving a real order parame
c(x,y,t), which describes the slow~spatial and temporal!
variation of the vertical component of the velocity and t
temperature. To study the effects of shear on the horizo
structure, we extend the SH equation by including a horiz
tal velocity driven by distortions of the patterns as follow

] tc5ec2~¹21km
2 !2c2g̃c32v•“c, ~1!

wheree is the reduced control parameter with the transiti
to rolls occurring fore.0. The divergence-free horizonta
velocity v is completely defined by the vertical vorticityV
5“3v. We assume the general form of vorticity drivin
given by Manneville@11#:

~t] t2h¹2!V5gm“c3“~¹2c!. ~2!
©2003 The American Physical Society06-1
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The coefficientgm represents the strength of the hydrod
namic coupling betweenv and the fieldc. This coupling is
crucial for persistent SDC@12#. The first term on the left-
hand side represents the inertial effects of the fluid, while
second term comes from the viscous dissipation due to h
zontal gradients of the flow. For a slowly varyingV we may
taket50 for simplicity ~the so-called passive vorticity cas
@13#!.

In the present paper we consider the case of a steady s
flow where the average flowu[^v& is given by

u5syex , ~3!

with s being the shear rate andex the unit vector along thex
axis. Writingv5u1v8, we introduce the ‘‘intrinsic’’ vortic-
ity V8, defined byV85“3v8. Thenv8 is driven through
the equation

¹2V85g“~¹2c!3“c, ~4!

whereg[gm /h.
Finally, to account for the damping of the horizontal flo

by the viscous coupling to the top and bottom plates,
follow Refs.@2,11# to modify Eq.~4! phenomenologically as

~¹22c2!V85g“~¹2c!3“c, ~5!

with c2 anO(1) constant serving as a measure for the dam
ing effect.

Let us introduce the vertical vorticity potentialz, defined
by ez•V852¹2z, ez being the unit vector in thez direction,
so thatv85(]yz,2]xz). It then yields

] tc5ec2~¹21km
2 !2c2g̃c32sy]xc2“z`¹c, ~6!

~c22¹2!¹2z5g“¹2c`¹c, ~7!

where “ f `“h[] f /]x ]h/]y2] f /]y ]h/]x. The model
that will be studied in what follows is defined by Eqs.~6! and
~7!. Note that the term¹2 in c22¹2 serves to reduce th
importance of higher-wave-number modes in the vortic
field @14#.

B. Method of simulations

Instead of using the conventional discretization algorit
for the partial differential equations~PDEs! ~6! and ~7!, we
employ the cell-dynamical-system~CDS! method on a
square lattice@10#. The CDS method is to constructab initio
the corresponding space-time discrete model at the me
copic level. Hence the discretizaton mesh sizes are too co
to give a numerical solution that accurately shadows the
lution of the original PDEs. However, it is now amply su
ported that CDS modeling is a computationally efficie
method to attain the late stage dynamics of the systems u
study. The CDS model corresponding to Eq.~6! in the ab-
sence of hydrodynamic coupling~i.e., for g50) is

c~n,t11!5J~n,t !2sny@]x#dc~n,t !. ~8!
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Herec(n,t) is the order parameter at timet in the cell at the
lattice pointn5(nx ,ny), wherenx andny are integers with
1<nx<Lx ,1<ny<Ly , and

J[Atanhc2L†@c#k‡k ~9!

is the effective chemical potential corresponding to the fi
three terms on the right-hand side of Eq.~6!. The parameters
A, L, andk set the units used in the CDS dynamics, and

@X#k5^^X&&2kX, ~10!

where the double angular brackets denote the isotropized
erage of a neighborhood of cells:

^^X&&5
1

6 ( X~nearest2neighbor cells!

1
1

12 ( X~next2nearest2neighbor cells!.

~11!

In Eq. ~8!, @O#d denotes the discrete version of the enclos
operatorO, and the discrete gradient is center-differen
evaluated.

We apply a predictor-corrector algorithm to Eqs.~6! and
~7! to upgrade the order-parameter field; namely, we fi
predict the order-parameter field based on Eq.~8!, and then it
is corrected using the predicted value ofc to evaluatez on
the right-hand side of Eq.~6!:

c* ~n![J~n,t !2sny@]x#dc~n,t !, ~12!

~c22@¹2#d!@¹2#dz~n,t !5g@“#d@¹2#dc* ~n!`@“#dc* ~n!,
~13!

c~n,t11!5c* ~n!2@“#dz~n,t !`@“#dc* ~n!. ~14!

FIG. 1. Snapshot of the SDC state att530 000 in numerical
simulations of Eqs.~12!–~14!. The white regions denote positiv
values of the order parameterc and the gray ones negativec.
6-2
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FIG. 2. Domain growth under shear flow with shear rates50.002 in response to random initial conditions. The shear direction and
shear gradient direction are shown relative to the assigned coordinate system. At the bottom of each panel the time step is show
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In order to solve the implicit equation~13! for z, we use the
pseudospectral technique with a fast Fourier transfo
method, and for the Laplacian we use the identification@15#
@¹2#dX53(^^X&&2X).

It should be remarked here that caution is required in
computation of Fourier transforms~see, e.g.,@16#! because
the boundary condition in the presence of the shear fl
given by Eq.~3! becomes@17#

c~nx ,ny ,t !5c„nx1NxLx1g~ t !NyLy ,ny1NyLy ,t…
~15!

with arbitrary integersNx and Ny , and g(t)[st being the
shear strain.

III. RESULTS

We have studied the domain growth of convection p
terns by computer simulations of Eqs.~12!–~14! with fixed
parametersc252, L50.8, k50.7, andg520. We have ex-
plored the shear effects for several values ofA ands. Unless
otherwise specified, the initial conditions are a random u
form distribution of thec ’s in the range@20.1,0.1#. We have
studied several systems withLx3Ly52563256, 5123512,
and 51231024 to investigate the finite-size effect.„Accord-
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ing to the linear analysis of Eq.~9!, the diameter of a roll (d)
is estimated to bed5p/km with km5arccos@(3k21)/2#.
Hence the aspect ratio (G) of the systems studied i
(Gx ,Gy)[(Lx/2d,Ly/2d)5(40,40),(81,81),(81,161), re-
spectively.… We observed that all runs were consistent w
the qualitative behavior reported below.

A. Shear deformation and alignment

In the absence of shear flow but with hydrodynamic co
plings (g520), we observed that the SDC state grew forA
*1.03 from random initial conditions. Figure 1 shows
example of the SDC pattern forA51.05. When shear is
imposed and when the shear rate is substantially small,
domains growing exponentially in the initial regime are e
sentially unaffected by the shear, and the subsequent co
ening leads to a pattern similar to the no-shear case.

With large shear rates, however, deformation of doma
dominates long before the corresponding spirals h
formed. Figure 2 illustrates such a case withs50.002. In
order to see how the SDC pattern deforms under str
shear, we also performed simulations with the same sh
rate but by imposing initially a well-developed SDC patter
The time evolution of the pattern is shown in Fig. 3. In t
initial stage the spirals are simply elongated along the bis
FIG. 3. Time evolution of the initially imposed SDC pattern in the presence of shear withs50.002.
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FIG. 4. Shear banding observed att5105 for A51.05 under shear ofs5531024 ~the upper left panel!. Shown on the right is the time
evolution of the shear band after a temperature jump toA51.08 or temperature quench toA51.02 is imposed. The elapsed time step af
the temperature change is shown at the bottom.
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tor of thex andy axes by the deformation component of t
shear flow. At intermediate times the average direction of
patterns rotates and becomes more aligned with the flow
the meanwhile the stretched spiral domains rupture to fo
stripes. At large times, regions with stripes aligned with
flow fill the whole space.

B. Shear banding

For intermediate strengths of shear, we find that a ban
structure is spontaneously formed, exhibiting the coexiste
of rolls and spirals. It is shown in Fig. 4. The nonequilibriu
coexistence between phases of different symmetry is c
monly referred to as shear banding, and has been repo
frequently ~albeit little is known about the underlyin
mechanism determining this coexistence! in a variety of soft
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e
In
m
e

ed
ce

-
ted

matter such as colloid crystals and wormlike micelles un
shear~see Ref.@18# for a recent review!. As will be shown in
the next subsection, this banded structure is quite long liv
indicating a metastable state.

Use of the shear band structure can give additional c
firmation of the before-mentioned statement concern
which of SDC and ISR is the generic attractor starting fro
random initial conditions; namely, we used this morpholo
as an initial condition for a simulation and abruptly chang
the value ofA ~corresponding to a ‘‘temperature’’ jump!. We
observed that, depending on which basin of attractor the t
perature jump is made into, either SDC or ISR first appea
the SDC-ISR interface and gradually cover the whole spa
As illustrated in Fig. 4, SDC is an intrinsic state of conve
tion for A*1.03.
FIG. 5. Snapshots of thec field at various times from random initial conditions withA51.05 andg520 for s5531024.
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C. Metastability

Simulations showed that the shear banding existed fo
very long time. This is illustrated in Fig. 5, where a squa
cell of G581 is used withs5531024. Even at 1.73106

time steps after shearing had started, the coexistence
mained. ~Note that the horizontal diffusion time scale

FIG. 6. Evolution of SDC without shear. The other conditio
are the same as for Fig. 5.
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given by 4G2'26 000 in units of the vertical viscous tim
scale.! For comparison, evolution of SDC in the absence
the shear flow but with the other parameters being the s
is shown in Fig. 6. Clearly the asymptotic state without sh
in this case is SDC. These results suggest metastability o
banded structure.

The metastability of the coexistence of SDC and ISR w
verified by a shear cessation experiment~numerical! as fol-
lows. After establishing well-defined bands under shear fl
we turned off the shear and saw how the system chose
tween SDC and ISR. The observed evolution of SDC inv
ing the ISR region is shown in Fig. 7. The SDC state grew
the SDC/ISR interfaces, gradually drifting toward the IS
region. This process continued until the SDC filled the en
plane. The invasion into ISR regions through the propaga
of almost flat fronts in our simulation compares remarka
well with the experimental observations@5,6#. We remark,
however, that in those experiments the SDC/ISR bound
was triggered by a slight inhomogeneity on the sidewall
the convection cell.

We quantify the competition between the two states
monitoring the spatial average of the intrinsic vertical vort
ity Vz8[S21*drez•V8, whereS is the area of the system
We associate the growth inuVz8u with the formation of spiral
morphology. Figure 8 shows the time dependence of the
solute value ofVz8 that we obtained from the shear cessati
simulation of Fig. 7. After cessationuVz8u rapidly decreased
from the initial value~given by the horizontal dashed line! to
the valueV i'0.003 94. The value ofuVz8u remained un-
changed over very long times, revealing the existence o
incubation period for the coarsening~of SDC! process. It
then starts to increase and reaches the constant valueV f
'0.008 08, indicating that the SDC fronts start to move in
the ISR region and the system is approaching a state fu
SDC. The same stationary limitV f is obtained for SDC for-
mation from random initial conditions~open circles in Fig.
8!. These features, together with the coexistence of two
ferent phases, suggest that the domain coarsening in this
is the nucleation and growth process. In fact, as plotted
the solid curve in Fig. 8, the sigmoidal shape of theuVz8u
curve is well represented by the Avrami form@19#

uVz8~ t !u5@12X~ t !#V i1X~ t !V f , ~16!
FIG. 7. Time evolution of the shear band after cessation of shearing. The initial pattern att50 is the pattern attained aftert595 499 time
steps under shear ofs5531024 as given in Fig. 5. The elapsed time after the cessation is given at the bottom of each panel.
6-5
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with

X~ t !512exp@2~ t/t!n#. ~17!

The quantityX(t) represents the volume fraction of SDC
t, wheret andn are constants. The so-called Avrami exp
nent n is determined in our case to ben'1.5. Considering
the limited accuracy of our data, this value is not inconsist
with the results that the front propagation is local to t
neighborhood of the flat interface and the front velocity
approximately independent of time@6#. However, it should
be remarked that the classification of the nucleation kine
with the Avrami exponents may be misleading due to ma
specific assumptions that the Avrami theory is based on~see,
e.g., Ref.@20#!. Hence we here only take the viewpoint th
growth characterized by Avrami-like kinetics~16! is consis-
tent with nucleation and growth. Interpretation in terms
this nucleation and growth dynamics is a strong indication
the metastability of the shear band structure.

IV. DISCUSSION

We have studied the model equations that govern the
mation of SDC and ISR under a steady shear. We foun
shear banding where both SDC and ISR states coexist.

FIG. 8. Time dependence of the strength of the intrinsic vert
vorticity Vz8 in response to the shear cessation~filled circles! as
described in Fig. 7. The horizontal dashed line denotes the valu
uVz8u just after the cessation. The solid curve is the best fit to
data using the Avrami form@see Eqs.~16! and~17!#. Also shown by
open circles is the time evolution ofuVz8u in the absence of shea
after starting with random initial conditions.
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existence of a prolonged transient behavior of the vert
vorticity could be interpreted as an indication of metastab
ity of this shear-induced structure.

In the present paper, we considered the dynamic respo
of the spiral patterns to shear deformation. It would be int
esting to examine how such deformation is reflected in rh
logical properties, because it is well known that the rheolo
cal properties are very sensitive to the appearance
disappearance of spatial orders. We anticipate that a va
of anomalous dynamic properties will be observed. For
stance, one might ask how distortions of spiral geomet
affect the stress-strain relation of these structures. Here
merely write down the expression of the stress tensorsab for
the system described by Eq.~1!. It may be derived by using
the method described in Ref.@21# and is given by

sab~ t !52
2

V (
k

kakb

km
2 ~k22km

2 !S~k,t !, ~18!

with the isotropic contributions being dropped out. He
S(k,t)[^uc(k,t)u2& is the structure factor calculated from
the Fourier componentc(k,t) of the order parameter, andV
is the system volume. The expression~18! should be useful
in elucidating the nature of SDC, and we hope to be able
report on this development in the future.

The ordering kinetics of spiral pattern formation in th
absence of shear flow is of great interest in its own right a
deserves further study. As in roll formation, coarsening
ward the SDC state following a rapid ‘‘quench’’ in temper
ture exhibits a long-time dynamics. This may be inferr
from Fig. 8 ~open circles!. ~From Fig. 8 we find thatuVz8u
relaxes to the plateau value in proportion tot2b with b
'0.3. We note, however, that this value of the expon
should not be taken too seriously because our present
merical data are of limited accuracy.! In view of the fact that
no successful theoretical understanding is yet available
the ordering dynamics of roll patterns@22#, it is certainly
important to broaden the question to systems in which
spatially periodic state is different from but nonethele
closely related to roll patterns. For example, one may
whether there is any length scale characterizing the gro
of the SDC regions, and if it should exist the question of h
the length scale grows with time becomes relevant.
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