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Competition of spiral-defect chaos and rolls in Rayleigh-Beard convection under shear flow
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Computer simulations of domain coarsening of Rayleighdd convective patterns under horizontal shear
flow are carried out. The model calculations reported here explicitly include the hydrodynamic interaction of
the order parameter field and provide a description of the spiral-defect chaos which competes with the roll
pattern. We observe shear banding at moderate strain rates.
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[. INTRODUCTION plane.[Thermal convection with vertical shedie., shear
between parallel platgfas been actively studied in connec-
Rayleigh-Beard (RB) convection is a paradigmatic ex- tion with geophysical phenomena such as cloud street forma-
ample of spatially extended nonlinear phenomghiaWhen  tion (see Ref[8] for a review. However, as far as we know,
a horizontal fluid layer is heated from below and cooled fromno work has been done concerning SDC in connection with
above, it undergoes a transition from a spatially and tempoborizontal sheaf.In this case, the rolls will be bent by the
rally uniform conducting state to a convecting state of lowervorticity that is induced by the shear. The resulting roll de-
symmetry. The structure that emerges above the convectiiérmation will in turn enhance the mean-flow effects. At the
threshold in large-aspect-ratio systems is convective roll§ame time it will be opposed by shearing planes that tend to
(stripeg of arbitrary orientation. When the rolls are distorted gidify the rolls. It is thus expected that SDC competes with
into curved textures, curvatures of the patterns induce a horlSR under shear. In fact we present simulations which show
zontal flow. The flow in turn advects the rolls, leading to athat, under the influence of shear flow, RB convection spon-

nonlocal and long-range hydrodynamic coupling between lotaneously forms a banded structure characterizing the coex-
cal structure$?2]. istence of SDC and ISR.

As this “mean flow” must be divergence-free by effective ~ Our paper is constructed as follows. In the next section
incompressibility of the fluid, it has only a transverse com-We introduce model equations for RB convection under ap-
ponent. Accordingly, the flow is exclusively described by aplied shear flow. These are suitably generalized Swift-
(vertica) vorticity field. The chiral nature of the mean flow is Hohenberg(SH) equationq9] including the mean flow and
then responsible for the formation of passive spirals whictshear flow. We solve numerically a cell-dynamical-system
were discovere@3] in a small-Prandtl-number fluid at mod- [10] model(motivated by the SH-model descriptiothat is
erate distance from the onset of convection. The pattern igXpected to be appropriate for our problem. In Sec. Ill we
marked by the persistent creation and destruction of rotatinghow the results of the simulation. Section IV contains a
spirals of various sizes, and is hence termed spiral-defe@eneral discussion of our results.
chaos(SDCO). The discovery was made in a parameter regime
where, on the basis of the theory for an infinitely extended
system[4], parallel straight rollgideal straight rolls, or ISR Il MODEL EQUATIONS
are stable. In fact, it has been demonstrated experimentallyA. The generalized Swift-Hohenberg model under shear flow
[5.6] that ISR form only if a perfect parallel-roll pattern is = A gimplified model of the transition to roll patterns was
prepared by some special procedures when SDC is the Osiroduced by Swift and Hohenberfg]. It is a two-
neric attra_ctor from random initial .condltlons. o dimensional theory involving a real order parameter

Interactions between the flow field and a certain mter'nal (x,y,t), which describes the slospatial and temporal
structure can also be brought about by shearing of variougayiation of the vertical component of the velocity and the
complex fluids(7]. Examples |ncIL_1de I|qU|_d crystals, block temperature. To study the effects of shear on the horizontal
copolymers, and surfactant solutions. It is well known thalgy,cqre, we extend the SH equation by including a horizon-
the shear has a strong organizing effect upon these systems, \e|qcity driven by distortions of the patterns as follows:
and that structures such as lamellae or cylinders are easily
aligned by relatively weak shear. (U2 12\2, B

A natural question that arises here is whether SDC can dp=ey=(Vitkn) "y =gy7—v- Vi, @)
coexist with ISR when both shear and mean flow are present. . . .
The aim of this paper is to study this interesting issue. inwheree is the _reduced control pa_rameter with the tr_ansmon
order to gain insight into the effects of shear on RB conveci0 "0lIs occurring fore>0. The divergence-free horizontal
tion, we discuss the simplest case of a plane Couette flow€locCity v is completely defined by the vertical vortici§

i.e., a flow with the velocity and its gradient in the horizontal =V X v- We assume the general form of vorticity driving
given by Mannevillg 11]:

*Electronic address: shiway@hiei.kit.ac.jp (10— PV Q=g VX V(V2y). (2
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The coefficientg,, represents the strength of the hydrody- Here /(n,t) is the order parameter at tinhén the cell at the
namic coupling between and the fieldys. This coupling is  lattice pointn=(n,,ny), wheren, andn, are integers with
crucial for persistent SDC12]. The first term on the left- 1<n,<L,,1<ny<L,, and
hand side represents the inertial effects of the fluid, while the
second term comes from the viscous dissipation due to hori- J=Atanhy—L[[ #],]. (9)
zontal gradients of the flow. For a slowly varyiy we may
take r=0 for simplicity (the so-called passive vorticity case is the effective chemical potential corresponding to the first
[13)). three terms on the right-hand side of E6).. The parameters
In the present paper we consider the case of a steady shedy L, and« set the units used in the CDS dynamics, and
flow where the average flow=(v) is given by
[XTe= (X)) = xX, (10)
u=sye, (€©))
where the double angular brackets denote the isotropized av-
with s being the shear rate amg the unit vector along the  erage of a neighborhood of cells:
axis. Writingp=u+v’, we introduce the “intrinsic” vortic-
Lﬁegq’ugﬁg;\]ed byQ’'=V Xv'. Thenv' is driven through (X)) = % S X(nearest neighbor cells

20 = 2 1
V' =gV(Vi) XV, @) +1—22 X(next—nearest neighbor cells.
whereg=g,,/ 7.
Finally, to account for the damping of the horizontal flow
by the viscous coupling to the top and bottom plates, w
follow Refs.[2,11] to modify Eq.(4) phenomenologically as

11

Gn Eq. (8), [ O]y denotes the discrete version of the enclosed
operatorO, and the discrete gradient is center-difference
evaluated.

We apply a predictor-corrector algorithm to E¢§) and
9 . (7) to upgrade the order-parameter field; namely, we first
with ¢” anO(1) constant serving as a measure for the dampy, g ict the order-parameter field based on @j.and then it

ing effect. i ted using the predicted valueypfto evaluat
Let us introduce the vertical vorticity potenti&] defined Itf“: ?{éﬁf_ﬁanlésgge o? E(r:{eﬁ)!c od valueyplo evaluatel on

bye,- Q'=—V?{, e, being the unit vector in thedirection,
so thatv’ = (dy¢, — d,{). It then yields g* (N)=J(n,t) —sn[ g ]ap(n,1), (12)

(V2=c?)Q'=gV(VZ)) XV, ©)

= ey (VA k) Y=Qy —sya, =V EAVY, (6) (2 [v2])[V2]uL(nt) =g[ V][ V2]a¥* (M ALV g (n),
(13)

(c?=V?)V?(=gVV?y/\Vy, (7)
P(nt+1)=¢*(n) = [V]el(nOALV]gy*(n). (14
where V{/AVh=df/ox ohldy—afldy ohlgx. The model
that will be studied in what follows is defined by E@6) and
(7). Note that the tern¥V? in ¢>—V? serves to reduce the
importance of higher-wave-number modes in the vorticity
field [14].

B. Method of simulations

Instead of using the conventional discretization algorithm
for the partial differential equation®DEg9 (6) and(7), we s
employ the cell-dynamical-systeniCDS) method on a
square lattic¢10]. The CDS method is to construab initio
the corresponding space-time discrete model at the mesos-
copic level. Hence the discretizaton mesh sizes are too coarse
to give a numerical solution that accurately shadows the so-
lution of the original PDEs. However, it is now amply sup-
ported that CDS modeling is a computationally efficient
method to attain the late stage dynamics of the systems under
study. The CDS model corresponding to E6) in the ab-

X

sence of hydrodynamic couplinge., forg=0) is FIG. 1. Snapshot of the SDC state tat30 000 in numerical
simulations of Egqs(12)—(14). The white regions denote positive
p(n,t+1)=J(n,t) —sn[dy]qih(n,t). (8) values of the order parametgrand the gray ones negative
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FIG. 2. Domain growth under shear flow with shear mte0.002 in response to random initial conditions. The shear direction and the
shear gradient direction are shown relative to the assigned coordinate system. At the bottom of each panel the time step is shown.

In order to solve the implicit equatiofl3) for £, we use the ing to the linear analysis of E9), the diameter of a rollq)
pseudospectral technique with a fast Fourier transfornis estimated to bel= n/k,, with k,=arcco§(3x—1)/2].
method, and for the Laplacian we use the identificafits Hence the aspect ratiol'] of the systems studied is
[V2]gX=3({{X))—X). (I'y,I'y)=(Ly2d,L /2d)=(40,40,(81,8),(81,161), re-
It should be remarked here that caution is required in thespectively) We observed that all runs were consistent with
computation of Fourier transformsee, e.9.[16]) because the qualitative behavior reported below.
the boundary condition in the presence of the shear flow
given by Eq.(3) becomeg17] A. Shear deformation and alignment

p(ny,ny ,t)= p(ng+NyL+ y(t)NyLy,ny+NyLy 1) In the absence of shear flow but with hydrodynamic cou-
(15 plings (@=20), we observed that the SDC state grew Aor
=1.03 from random initial conditions. Figure 1 shows an
with arbitrary integersN, and Ny, and y(t)=st being the example of the SDC pattern fok=1.05. When shear is
shear strain. imposed and when the shear rate is substantially small, the
domains growing exponentially in the initial regime are es-
Il. RESULTS sentially unaffected by the shear, and the subsequent coars-
ening leads to a pattern similar to the no-shear case.

We have studied the domain growth of convection pat- With large shear rates, however, deformation of domains
terns by computer simulations of Eq4.2)—(14) with fixed  dominates long before the corresponding spirals have
parameterg®=2, L=0.8, k=0.7, andg=20. We have ex- formed. Figure 2 illustrates such a case with 0.002. In
plored the shear effects for several valuef\@inds. Unless  order to see how the SDC pattern deforms under strong
otherwise specified, the initial conditions are a random unishear, we also performed simulations with the same shear
form distribution of they’s in the rangd —0.1,0.1. We have rate but by imposing initially a well-developed SDC pattern.
studied several systems with X L,=256X256, 512512,  The time evolution of the pattern is shown in Fig. 3. In the
and 512 1024 to investigate the finite-size effe€Accord- initial stage the spirals are simply elongated along the bisec-

y
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FIG. 3. Time evolution of the initially imposed SDC pattern in the presence of sheaswith002.
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FIG. 4. Shear banding observedtat10® for A=1.05 under shear af=5x 10 * (the upper left pangl Shown on the right is the time
evolution of the shear band after a temperature jum@=+dl.08 or temperature quench Ac=1.02 is imposed. The elapsed time step after
the temperature change is shown at the bottom.

tor of thex andy axes by the deformation component of the matter such as colloid crystals and wormlike micelles under
shear flow. At intermediate times the average direction of thehearnsee Ref[18] for a recent review As will be shown in
patterns rotates and becomes more aligned with the flow. Ithe next subsection, this banded structure is quite long lived,
the meanwhile the stretched spiral domains rupture to fornndicating a metastable state.

stripes. At large times, regions with stripes aligned with the  Use of the shear band structure can give additional con-

flow fill the whole space. firmation of the before-mentioned statement concerning
which of SDC and ISR is the generic attractor starting from
B. Shear banding random initial conditions; namely, we used this morphology

For intermediate strengths of shear, we find that a bande@S an initial condition for a simulation and abruptly changed
structure is spontaneously formed, exhibiting the coexistenc#e value ofA (corresponding to a “temperature” jumpwe
of rolls and spirals. It is shown in Fig. 4. The nonequilibrium observed that, depending on which basin of attractor the tem-
coexistence between phases of different symmetry is conperature jump is made into, either SDC or ISR first appear at
monly referred to as shear banding, and has been reportéde SDC-ISR interface and gradually cover the whole space.
frequently (albeit little is known about the underlying As illustrated in Fig. 4, SDC is an intrinsic state of convec-
mechanism determining this coexistepgea variety of soft  tion for A= 1.03.

500U pe ST ST 2D 500 e I = = = == 500 = 500 T Ta—
= )
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300 ::’4‘74&,@:—@@ 300 = — 300 300 300
& = IS ) C@“@,«#_"_—;
e 2 —mz
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t=5,248 1=36,308 t=95,499 t=251,189 t=1,737,801

FIG. 5. Snapshots of thg field at various times from random initial conditions with=1.05 andg= 20 for s=5x 104,
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500 5 SO A (o R ) given by 4"?~26 000 in units of the vertical viscous time
@% @% @‘ )%’(’ 9-—@/“@ scale) For comparison, evolution of SDC in the absence of
2 oY c’\@ & the shear flow but with the other parameters being the same
400 g G@SJ CENS { is shown in Fig. 6. Clearly the asymptotic state without shear
© 3 in this case is SDC. These results suggest metastability of the
200 banded structure.

The metastability of the coexistence of SDC and ISR was
verified by a shear cessation experimamimerical as fol-
lows. After establishing well-defined bands under shear flow,
we turned off the shear and saw how the system chose be-
tween SDC and ISR. The observed evolution of SDC invad-
ing the ISR region is shown in Fig. 7. The SDC state grew at
the SDCI/ISR interfaces, gradually drifting toward the ISR
region. This process continued until the SDC filled the entire
plane. The invasion into ISR regions through the propagation
of almost flat fronts in our simulation compares remarkably
well with the experimental observatiofs,6]. We remark,
however, that in those experiments the SDC/ISR boundary
was triggered by a slight inhomogeneity on the sidewall of
the convection cell.

We quantify the competition between the two states by
monitoring the spatial average of the intrinsic vertical vortic-
ity Q.=S"!fdre,-Q', whereSis the area of the system.
We associate the growth || with the formation of spiral
morphology. Figure 8 shows the time dependence of the ab-
solute value of}, that we obtained from the shear cessation
simulation of Fig. 7. After cessatiojf),| rapidly decreased
from the initial value(given by the horizontal dashed lint
the value();~0.003 94. The value ofQ}| remained un-
changed over very long times, revealing the existence of an
incubation period for the coarsenifgf SDC) process. It

100 200 300 400 500 then starts to increase and reaches the constant ¥ajue
t=95,499 ~0.008 08, indicating that the SDC fronts start to move into
. . _ the ISR region and the system is approaching a state full of

FIG. 6. Evolution Qf SDC without shear. The other conditions gpc. The same stationary limi; is obtained for SDC for-
are the same as for Fig. 5. mation from random initial conditionéopen circles in Fig.

8). These features, together with the coexistence of two dif-
ferent phases, suggest that the domain coarsening in this case

Simulations showed that the shear banding existed for & the nucleation and growth process. In fact, as plotted by
very long time. This is illustrated in Fig. 5, where a squarethe solid curve in Fig. 8, the sigmoidal shape of {ig)|
cell of '=81 is used withs=5x10 4. Even at 1.X10°  curve is well represented by the Avrami fofrh9]
time steps after shearing had started, the coexistence re-
mained. (Note that the horizontal diffusion time scale is |Q (D] =[1=X(1) ]2+ X(1) Qy, (16)
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FIG. 7. Time evolution of the shear band after cessation of shearing. The initial patter & the pattern attained after 95 499 time
steps under shear s=5x 104 as given in Fig. 5. The elapsed time after the cessation is given at the bottom of each panel.
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existence of a prolonged transient behavior of the vertical

vorticity could be interpreted as an indication of metastabil-
) ity of this shear-induced structure.
0.010 %, In the present paper, we considered the dynamic response
° of the spiral patterns to shear deformation. It would be inter-
esting to examine how such deformation is reflected in rheo-
logical properties, because it is well known that the rheologi-
cal properties are very sensitive to the appearance and
disappearance of spatial orders. We anticipate that a variety
of anomalous dynamic properties will be observed. For in-
stance, one might ask how distortions of spiral geometries
affect the stress-strain relation of these structures. Here we
merely write down the expression of the stress tensgyfor
T e e T T the system described by E@.). It may be derived by using

10’ 10° 104_ 10° 10° the method described in RgR1] and is given by
time step

0.012

0.008

)

0.006

0.004

k kﬁ(kz—kzm)S(k,t), (18)

2
m

FIG. 8. Time dependence of the strength of the intrinsic vertical o 5(t)=— E 2
vorticity (), in response to the shear cessatifilied circles as @B V X
described in Fig. 7. The horizontal dashed line denotes the value of
|Q,| just after the cessation. The solid curve is the best fit to thewith the isotropic contributions being dropped out. Here
data using the Avrami forrfsee Eqs(16) and(17)]. Also shown by S(k,t)=(|y(k,t)|?) is the structure factor calculated from
open circles is the time evolution ¢f)}| in the absence of shear the Fourier component(k,t) of the order parameter, and
after starting with random initial conditions. is the system volume. The expressid®) should be useful
in elucidating the nature of SDC, and we hope to be able to
report on this development in the future.
—1_ _ n The ordering kinetics of spiral pattern formation in the
X(O)=1=exd = (t/n)7]. 19 absence of shear flow is of great interest in its own right and

The quantityX(t) represents the volume fraction of SDC at deserves further study. As in roll formation, coarsening to-
t, wherer andn are constants. The so-called Avrami expo-Wward the SDC state following a rapid “quench” in tempera-
nentn is determined in our case to Ie=1.5. Considering ture exhibits a long-time dynamics. This may be inferred
the limited accuracy of our data, this value is not inconsistenfrom Fig. 8 (open circles (From Fig. 8 we find that(),|
with the results that the front propagation is local to therelaxes to the plateau value in proportion tto® with 3
neighborhood of the flat interface and the front velocity is~0.3. We note, however, that this value of the exponent
approximately independent of tinj€]. However, it should should not be taken too seriously because our present nu-
be remarked that the classification of the nucleation kineticénerical data are of limited accuragyn view of the fact that
with the Avrami exponents may be misleading due to manyno successful theoretical understanding is yet available for
specific assumptions that the Avrami theory is base¢ser, the ordering dynamics of roll patterdg2], it is certainly
e.g., Ref[20]). Hence we here only take the viewpoint that important to broaden the question to systems in which the
growth characterized by Avrami-like kineti¢46) is consis-  spatially periodic state is different from but nonetheless
tent with nucleation and growth. Interpretation in terms ofclosely related to roll patterns. For example, one may ask
this nucleation and growth dynamics is a strong indication ofwhether there is any length scale characterizing the growth
the metastability of the shear band structure. of the SDC regions, and if it should exist the question of how
the length scale grows with time becomes relevant.

k

with
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